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Lemma 0.1 (for Exercise 7). Let k be a field contained in a field K. Let E, F be finitely
generated algebraic extensions of k in K, that is,

E:k(al,...,am) F:k’(ﬁl,,ﬁn)
Then
EF:k(al,...,am,ﬁl,...,ﬁn)

Proof. Because k C F C FF and ay,...,a,, € E C EF and B4,...,8, € F C EF, thus
a;, B; € EF, so
k(al,...,am,ﬁl,...,ﬁn)CEF

On the other hand, we have the inclusions E, F' C k(aq,...,Qm, B1,...,Bn), and EF is the
intersection of all fields containing £ and F', so

EFC ]{I(Oél,...,()ém,ﬁh...,ﬁn)
Thus equality holds. []

Lemma 0.2 (for Exercise 7). Let k C E C K be a tower of fields, and let ay,...,a, C K
be algebraic over k. Then

[E(aq,...,ap)  E] < [k(ag,...,q) K]

Proof. First we do the case n = 1. We know that [k(ay) : k] = deg(Irr(ay, k)). Since
the k C E, the irreducible polynomial of a; over E can’t have larger degree than that of
Irr(ay, k), so

deg(Irr(ay, E)) = [E(aq) : E] < [k(aq) : K]

Now suppose the result holds for 1,2,...,n — 1. Define k; = k(ay,...,q;) and E; =
E(ai,...,q;). Then we have towers

kCkiCkyC...Ck,
FECE, CEyC...CE,



By the multiplicative tower law,
[En : E] = [En : Enfl] Ce [EQ : El][El : E]
[kn . k] = [k:n . kn—l] e [k?g . kl][k’l . k’]

By the base case, [Ei1 : ;| < [ki11 : k;] for all ¢, applying this inequality repeatedly to the
tower product gives the desired inequality. O

Proposition 0.3 (Exercise 7). Let E, F be finite extensions of a field k with E, F contained
i a field K. Then
[EF : k| < [E:k][F : kK

If [E : k] and [F : k| are relatively prime, then the above is an equality.

Proof. E and F are finitely generated algebraic extensions, so we can write them as

E:k(al,...,am) F:k’(ﬁlayﬁn)

And by a previous lemma, we can write the compositum as

EF =E(By,...,0,) = F(ag,...,an) =k(ag, ..., am, b1y, Bn)
By the previous lemma,
BB B) BN < (B, ) k] — [EF: B) < [F:
Applying the tower law to k C £ C EF, we have
[EF : k| =[EF : E|[E: k| <|[E:k|[F:KkK

By the tower law, both [E : k| and [F' : k] divide [EF : k|. If [E : k] and [F : k] are relatively
prime, then their product must also divide [E'F' : k], so then [E : k|[F : k] < [EF : k].
Thus if [E : k|, [F' : k] are relatively prime, the inequality goes both ways and becomes and
equality. O]

Proposition 0.4 (Exercise 9). Let p be a prime. The splitting field fof 2 — 1 over Z|pZ
is Z/pZ.
Proof. By the binomial theorem,

8

(. — 17" =2 + (ﬁs)a;pg—l(—nl +.+ (p b )x(—nps—l + (=1
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Since (]f ) is divisible by p all but the first and last terms vanish in Z/pZz], so

8

(x — 1)”8 =2 + (—1)?

If p is odd, then p® is odd and (—1)” = —1. If p is even, then p = 2, so —1 = 1, so
(=1)”" = —1. Thus
1= (x—1)"

so 2" splits into linear factors over Z/pZ. O



Proposition 0.5 (Exercise 10). Let o € R such that a* = 5. Then Q(ia?) is normal over
Q, and Q(a + i) is normal over Q(ia?), but Q(a + ia) is not normal over Q.

Proof. Let f(z) = 2> +5 € Q[z]. Then f is irreducible over Q, and Q(:ia?) is the splitting
field of f, since
flx) =245 = (z —ia®)(z +ia?)

and Q(ia?) = Q(ia?, —ia?). Thus Q(ia?) is a normal extension of Q.

Now let g(x) = z* — 2ia? € Q(ia?)[z]. Then

g(x) = 2* — 2ia* = 2* — (a® + 2ia® — o?) = 1 — (a® + 2ia® + i*a?)
=12° — (a+ia)’ = (z — (a +ia))(z + (a + ia))

Thus Q(a + ic) is the splitting field of g over Q(ia?), so Q(« + i) is normal over Q(ia?).

Let h(z) = 2* + 20. Then h is irreducible over Q by Eisenstein’s criterion at the prime

5, and
(a+ia)' = —20 = h(a+ia) =0

so a+ i is a root of h. But h does not split into linear factors in Q(« + i«r). It does factor
over Q(a +ia, —a + ia) as

7' 420 = (z — (a +ia))(z — (a +ia))(z — (—a +ia))(z + (—a +ia))

But —a +ia € Q(a + ia), so h does not split into linear factors over Q(« + iar). But it has
a root in Q(«a + i), so this extension is not normal. O

Proposition 0.6 (Exercise 12). Let K be a finite field with p™ elements for some prime p.
Then every element of K has a unique pth root in K.

Proof. Define ¢ : K — K by x +— 2P. This is a field homomorphism, since
(a+b)P =a?+b°

in characteristic p. Then ker ¢ must be zero, since it is an ideal of a field. Thus ¢ is injective.
But ¢ is a map between finite sets, so then it must also be surjective. Thus ¢ is a bijection,
so for every z € K there is a unique y so that y? = z. O

Proposition 0.7 (Exercise 15). Let p be a prime and let K be a field of characteristic p.
Suppose a € K has no p-th root. Then for all n € N, the polynomial f(x) = 2" — a is
irreducible in K|[x].

Proof. First we consider the case n = 1. Let F be a splitting field for f, and let a € F' be a
root of f, so a”? = a. Then F also has characteristic p, so

(x—a)f =2 —a? =2 —a = f(x)

Thus « is the only root of f, with multiplicity p. By unique factorization in K[z]|, we can
write f as a product of monic irreducible polynomials,

f(@) = q(z)g2(x) . . . g ()
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where each ¢;(z) is a power of (x — «) by the above. Since each ¢; is irreducible, each ¢; is
equal to Irr(a, K), so

f(z) = (Irr(a, K))™
We know that Irr(a, K) = (z — )’ for some j € N, so jm = p. We know that a does not
have a pth root in K, so o ¢ K, so j # 1. Then since p is prime, 7 = p, and m = 1, so
f =Trr(a, K), that is, f is irreducible.

Now assume the result is true for 1,2...,n — 1 and assume n > 2. Let GG be a splitting
field for g(z) = 2P — 1 over K, and let @ € G be a root of g, so a? = a. By the hypothesis
that a does not have a pth root in K, we know that a ¢ K. We claim that « does not have
a pth root in K(«). If § € K(a) = K[a] were a pth root of «, then  would need to be a
constant polynomial, so then 5 € K and (fP)? = of = a, which contradicts the fact that a
does not have a pth root in K. Thus « does not have a pth root in K(«). Now consider

_ P
(xp" ' —a> =" — P = " —a = f(x)

Since v does not have a pth root in K («), by inductive hypothesis, 2" — « is irreducible
1

over K (o). Form the splitting field for 2" —a over K (), and let 3 be a root, (67" = ).
Then

n—1 n—1 n—1

(=B = T =
so the splitting field for zF" " — « over K(a) is K(a, ). We know that 8 ¢ K(«a), since
27" —  is irreducible over K (). We can now write f as

@) = (" =a) = (@=p"") = (- py

over K(«, 3). Thus the only roots of f over K(a, ) are (3, and since § ¢ K, this implies
that f is irreducible over K. O]

Lemma 0.8 (for Exercise 16). Let K be a field of characteristic p, and let K C E be an
algebraic extension. Let « € E. Then for any n € N,

(K(a)"") K = K (o)

(In case of confusion, the left side is a compositum of the fields (K(a))”" and K inside the
algebraic closure of K.

Proof. K(a) contains a, so K(a)P" contains o?”, and the LHS compositum contains K, so
the containment
(K(@)”)K D K (o)
is clear. Let 8 € K(a)P". Then 3 = nP" for some n € K(a) = K|a]. We can write 1 as a
polynomial in « with coefficients by, ..., b,, € K, then pull out the linear term and think of
7 as a binomial.
n="bna™ + ...+ b+ by

Then because char K = p,
P =0 (@M B e b = b (@) 0 o b
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That is, n*" € K[a?"] = K(a?"), so 8 € K(a?"). Thus we have the containment
(K(a))” Cc K (") = (K(a)"")K C K (&)
This proves the desired equality. O

Proposition 0.9 (Exercise 16). Let K be a field of characteristic p, and let o be algebraic
over K. Then « is separable if and only if K(a) = K(a?") for allm € N.

Proof. Suppose « is separable. Then K («) is separable over K, so by Corollary 6.10 (Lang
pg. 251), (K(a)")K = K(«a). Using the previous lemma, (K (a)P")K = K(aP"), so we have
K(a) = K(a")

for all n € N. Now suppose that K(a) = K(a?") for all n € N. Then in particular,
K(a) = K(a?) = K(a)PK (using the previous lemma), so by Corollary 6.10 again, K («) is
separable over K; hence « is separable (by definition). O

Lemma 0.10 (for Exercise 17). Let K be a field of characteristic zero. Then every algebraic
extension of K s separable.

Proof. Let K C E be an algebraic extension, and let « € E, and let f = Irr(a, K). By
Proposition 6.1 (Lang pg. 247), f is separable, so « is separable. Then by Theorem 4.4
(Lang pg. 241), FE is a separable extension. ]

Lemma 0.11 (for Exercise 17). Let K be a field of characteristic p where p is prime, and
suppose that every element of K has a p-th root in K. Then every algebraic extension of K
1s separable.

Proof. Since every element of K has a p-th root in K, the injective homomorphism K — K
given by x +— P is surjective. Thus K? = K. Then by Corollary 6.12 (Lang pg. 252), every
algebraic extension of K is separable. O]

Lemma 0.12 (for Exercise 17). Let K be a field of characteristic p such that every algebraic
extension of K is separable. Then every element of K has a p-th root in K.

Proof. Let F_be the algebraic closure of K, and let a € K. Define f(z) = a? — a € K|x],
and let 8 € K be a root of f. Then f splits linearly over K (/3) since

(c— By =2" —F =a"—a

Suppose 3 ¢ K. Then K () is an algebraic extension, so by hypothesis it is separable. But
this contradicts the fact that f has a repeated root (namely , with multiplicity p), so we
must conclude that g € K. Thus « has a p-th root in K. O

Proposition 0.13 (Exercise 17). Let K be a field. The following are equivalent:
1. Fvery algebraic extension of K is separable.

2. Fither char K = 0 or char K = p and every element of K has a p-th root in K.
Proof. Lemmas 0.10 and 0.11 combine to give (2) = (1). Lemma 0.12is (1) = (2). O



