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Lemma 0.1 (for Exercise 7). Let k be a field contained in a field K. Let E,F be finitely
generated algebraic extensions of k in K, that is,

E = k(α1, . . . , αm) F = k(β1, . . . , βn)

Then
EF = k(α1, . . . , αm, β1, . . . , βn)

Proof. Because k ⊂ E ⊂ EF and α1, . . . , αm ∈ E ⊂ EF and β1, . . . , βn ∈ F ⊂ EF , thus
αi, βj ∈ EF , so

k(α1, . . . , αm, β1, . . . , βn) ⊂ EF

On the other hand, we have the inclusions E,F ⊂ k(α1, . . . , αm, β1, . . . , βn), and EF is the
intersection of all fields containing E and F , so

EF ⊂ k(α1, . . . , αm, β1, . . . , βn)

Thus equality holds.

Lemma 0.2 (for Exercise 7). Let k ⊂ E ⊂ K be a tower of fields, and let α1, . . . , αn ⊂ K
be algebraic over k. Then

[E(α1, . . . , αn) : E] ≤ [k(α1, . . . , αn) : k]

Proof. First we do the case n = 1. We know that [k(α1) : k] = deg(Irr(α1, k)). Since
the k ⊂ E, the irreducible polynomial of α1 over E can’t have larger degree than that of
Irr(α1, k), so

deg(Irr(α1, E)) = [E(α1) : E] ≤ [k(α1) : k]

Now suppose the result holds for 1, 2, . . . , n − 1. Define ki = k(α1, . . . , αi) and Ei =
E(α1, . . . , αi). Then we have towers

k ⊂ k1 ⊂ k2 ⊂ . . . ⊂ kn

E ⊂ E1 ⊂ E2 ⊂ . . . ⊂ En
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By the multiplicative tower law,

[En : E] = [En : En−1] . . . [E2 : E1][E1 : E]

[kn : k] = [kn : kn−1] . . . [k2 : k1][k1 : k]

By the base case, [Ei+1 : Ei] ≤ [ki+1 : ki] for all i, applying this inequality repeatedly to the
tower product gives the desired inequality.

Proposition 0.3 (Exercise 7). Let E,F be finite extensions of a field k with E,F contained
in a field K. Then

[EF : k] ≤ [E : k][F : k]

If [E : k] and [F : k] are relatively prime, then the above is an equality.

Proof. E and F are finitely generated algebraic extensions, so we can write them as

E = k(α1, . . . , αm) F = k(β1, . . . , βn)

And by a previous lemma, we can write the compositum as

EF = E(β1, . . . , βn) = F (α1, . . . , αm) = k(α1, . . . , αm, β1, . . . , βn)

By the previous lemma,

[E(β1, . . . , βn) : E] ≤ [k(β1, . . . , βn) : k] =⇒ [EF : E] ≤ [F : k]

Applying the tower law to k ⊂ E ⊂ EF , we have

[EF : k] = [EF : E][E : k] ≤ [E : k][F : k]

By the tower law, both [E : k] and [F : k] divide [EF : k]. If [E : k] and [F : k] are relatively
prime, then their product must also divide [EF : k], so then [E : k][F : k] ≤ [EF : k].
Thus if [E : k], [F : k] are relatively prime, the inequality goes both ways and becomes and
equality.

Proposition 0.4 (Exercise 9). Let p be a prime. The splitting field fof xp
8 − 1 over Z/pZ

is Z/pZ.

Proof. By the binomial theorem,

(x− 1)p
8

= xp
8

+

(
p8

1

)
xp

8−1(−1)1 + . . .+

(
p8

p8 − 1

)
x(−1)p

8−1 + (−1)p
8

Since
(
p8

n

)
is divisible by p all but the first and last terms vanish in Z/pZ[x], so

(x− 1)p
8

= xp
8

+ (−1)p
8

If p is odd, then p8 is odd and (−1)p
8

= −1. If p is even, then p = 2, so −1 = 1, so
(−1)p

8
= −1. Thus

xp
8 − 1 = (x− 1)p

8

so xp
8

splits into linear factors over Z/pZ.
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Proposition 0.5 (Exercise 10). Let α ∈ R such that α4 = 5. Then Q(iα2) is normal over
Q, and Q(α + iα) is normal over Q(iα2), but Q(α + iα) is not normal over Q.

Proof. Let f(x) = x2 + 5 ∈ Q[x]. Then f is irreducible over Q, and Q(iα2) is the splitting
field of f , since

f(x) = x2 + 5 = (x− iα2)(x+ iα2)

and Q(iα2) = Q(iα2,−iα2). Thus Q(iα2) is a normal extension of Q.
Now let g(x) = x2 − 2iα2 ∈ Q(iα2)[x]. Then

g(x) = x2 − 2iα2 = x2 − (α2 + 2iα2 − α2) = x2 − (α2 + 2iα2 + i2α2)

= x2 − (α + iα)2 = (x− (α + iα))(x+ (α + iα))

Thus Q(α + iα) is the splitting field of g over Q(iα2), so Q(α + iα) is normal over Q(iα2).
Let h(x) = x4 + 20. Then h is irreducible over Q by Eisenstein’s criterion at the prime

5, and
(α + iα)4 = −20 =⇒ h(α + iα) = 0

so α+ iα is a root of h. But h does not split into linear factors in Q(α+ iα). It does factor
over Q(α + iα,−α + iα) as

x4 + 20 = (x− (α + iα))(x− (α + iα))(x− (−α + iα))(x+ (−α + iα))

But −α+ iα 6∈ Q(α+ iα), so h does not split into linear factors over Q(α+ iα). But it has
a root in Q(α + iα), so this extension is not normal.

Proposition 0.6 (Exercise 12). Let K be a finite field with pn elements for some prime p.
Then every element of K has a unique pth root in K.

Proof. Define φ : K → K by x 7→ xp. This is a field homomorphism, since

(a+ b)p = ap + bp

in characteristic p. Then kerφ must be zero, since it is an ideal of a field. Thus φ is injective.
But φ is a map between finite sets, so then it must also be surjective. Thus φ is a bijection,
so for every x ∈ K there is a unique y so that yp = x.

Proposition 0.7 (Exercise 15). Let p be a prime and let K be a field of characteristic p.
Suppose a ∈ K has no p-th root. Then for all n ∈ N, the polynomial f(x) = xp

n − a is
irreducible in K[x].

Proof. First we consider the case n = 1. Let F be a splitting field for f , and let α ∈ F be a
root of f , so αp = a. Then F also has characteristic p, so

(x− α)p = xp − αp = xp − a = f(x)

Thus α is the only root of f , with multiplicity p. By unique factorization in K[x], we can
write f as a product of monic irreducible polynomials,

f(x) = q1(x)q2(x) . . . qm(x)
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where each q1(x) is a power of (x − α) by the above. Since each qi is irreducible, each qi is
equal to Irr(α,K), so

f(x) = (Irr(α,K))m

We know that Irr(α,K) = (x − α)j for some j ∈ N, so jm = p. We know that a does not
have a pth root in K, so α 6∈ K, so j 6= 1. Then since p is prime, j = p, and m = 1, so
f = Irr(α,K), that is, f is irreducible.

Now assume the result is true for 1, 2 . . . , n− 1 and assume n ≥ 2. Let G be a splitting
field for g(x) = xp − 1 over K, and let α ∈ G be a root of g, so αp = a. By the hypothesis
that a does not have a pth root in K, we know that α 6∈ K. We claim that α does not have
a pth root in K(α). If β ∈ K(α) = K[α] were a pth root of α, then β would need to be a
constant polynomial, so then β ∈ K and (βp)p = αp = a, which contradicts the fact that a
does not have a pth root in K. Thus α does not have a pth root in K(α). Now consider(

xp
n−1 − α

)p

= xp
n − αp = xp

n − a = f(x)

Since α does not have a pth root in K(α), by inductive hypothesis, xp
n−1 − α is irreducible

over K(α). Form the splitting field for xp
n−1−α over K(α), and let β be a root, (βpn−1

= α).
Then

(x− β)p
n−1

= xp
n−1 − βpn−1

= xp
n−1 − α

so the splitting field for xp
n−1 − α over K(α) is K(α, β). We know that β 6∈ K(α), since

xp
n−1 − α is irreducible over K(α). We can now write f as

f(x) =
(
xp

n−1 − α
)p

=
(

(x− β)p
n−1

)p

= (x− β)p

over K(α, β). Thus the only roots of f over K(α, β) are β, and since β 6∈ K, this implies
that f is irreducible over K.

Lemma 0.8 (for Exercise 16). Let K be a field of characteristic p, and let K ⊂ E be an
algebraic extension. Let α ∈ E. Then for any n ∈ N,(

K(α)p
n)
K = K

(
αpn

)
(In case of confusion, the left side is a compositum of the fields (K(α))p

n

and K inside the
algebraic closure of K.

Proof. K(α) contains α, so K(α)p
n

contains αpn , and the LHS compositum contains K, so
the containment (

K(α)p
n)
K ⊃ K

(
αpn

)
is clear. Let β ∈ K(α)p

n
. Then β = ηp

n
for some η ∈ K(α) = K[α]. We can write η as a

polynomial in α with coefficients b0, . . . , bm ∈ K, then pull out the linear term and think of
η as a binomial.

η = bmα
m + . . .+ b1α + b0

Then because charK = p,

ηp
n

= bp
n

m (αm)p
n

+ . . .+ bp
n

1 α
pn + bp

n

0 = bm(αpn)m + . . . bp
n

1 α
pn + bp

n

0
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That is, ηp
n ∈ K[αpn ] = K(αpn), so β ∈ K(αpn). Thus we have the containment

(K(α))p
n

⊂ K
(
αpn

)
=⇒

(
K(α)p

n)
K ⊂ K

(
αpn

)
This proves the desired equality.

Proposition 0.9 (Exercise 16). Let K be a field of characteristic p, and let α be algebraic
over K. Then α is separable if and only if K(α) = K(αpn) for all n ∈ N.

Proof. Suppose α is separable. Then K(α) is separable over K, so by Corollary 6.10 (Lang
pg. 251), (K(α)p

n
)K = K(α). Using the previous lemma, (K(α)p

n
)K = K(αpn), so we have

K(α) = K(αpn)

for all n ∈ N. Now suppose that K(α) = K(αpn) for all n ∈ N. Then in particular,
K(α) = K(αp) = K(α)pK (using the previous lemma), so by Corollary 6.10 again, K(α) is
separable over K; hence α is separable (by definition).

Lemma 0.10 (for Exercise 17). Let K be a field of characteristic zero. Then every algebraic
extension of K is separable.

Proof. Let K ⊂ E be an algebraic extension, and let α ∈ E, and let f = Irr(α,K). By
Proposition 6.1 (Lang pg. 247), f is separable, so α is separable. Then by Theorem 4.4
(Lang pg. 241), E is a separable extension.

Lemma 0.11 (for Exercise 17). Let K be a field of characteristic p where p is prime, and
suppose that every element of K has a p-th root in K. Then every algebraic extension of K
is separable.

Proof. Since every element of K has a p-th root in K, the injective homomorphism K → K
given by x 7→ xp is surjective. Thus Kp = K. Then by Corollary 6.12 (Lang pg. 252), every
algebraic extension of K is separable.

Lemma 0.12 (for Exercise 17). Let K be a field of characteristic p such that every algebraic
extension of K is separable. Then every element of K has a p-th root in K.

Proof. Let K be the algebraic closure of K, and let α ∈ K. Define f(x) = xp − α ∈ K[x],
and let β ∈ K be a root of f . Then f splits linearly over K(β) since

(x− β)p = xp − βp = xp − α

Suppose β 6∈ K. Then K(β) is an algebraic extension, so by hypothesis it is separable. But
this contradicts the fact that f has a repeated root (namely β, with multiplicity p), so we
must conclude that β ∈ K. Thus α has a p-th root in K.

Proposition 0.13 (Exercise 17). Let K be a field. The following are equivalent:

1. Every algebraic extension of K is separable.

2. Either charK = 0 or charK = p and every element of K has a p-th root in K.

Proof. Lemmas 0.10 and 0.11 combine to give (2) =⇒ (1). Lemma 0.12 is (1) =⇒ (2).
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